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Abstracl. A new type of HNC caiculation is proposed in which the variation of the
solvation energies with salt and solvent concentration is taken into account. This is done
by means of a seli-consistent calculation of the distance dependent permittivity function
around a central ion. The theory yields ion~jon as well as ion-solvent correlation
functions and concentration dependent permittivities. In contrast to HNC calculations
with a completely discrete-solvent model, the program requires only a smali amount of
computing power.

1. Introduction

Integral equation techniques are often used for calculating structural and thermo-
dynamical properties of electrolyte solutions [1]. As far as numerical methods are
concerned, the hypernetted chain (HNC) equation is considered to be the most con-
venient closure to the classical Ornstein—Zernike equation. Up to the present, two
levels of description have been used in the framework of integral equations.

At the so-called Born-Oppenheimer (BO) level, the structure of the solvent is
explicitely taken into account, and HNC provides us not only with ion~ion, but also
with ion—solvent and solvent—solvent correlation functions [2]. However, the amount
of numerical and mathematical problems is considerable.

At the so-called McMillan-Mayer (MM) level, the solvent is ‘averaged out’ and,
as a result, we obtain ‘only’ solvent-averaged ion-ion pair correlation functions [3]).
At this level, HNC is significantly simpler to resolve but information about ion-solvent
interactions is lost (‘primitive model’ HNC).

For both types of HNC calculations, potentials are needed which describe the
interactions between two particles. At the BO level these potentials are inferred from
ab-initio calculations or from more qualitative atomic models [4]. At the MM level,
the potentials are derived from BO calculations [5] or from intuitive physico-chemical
models such as the Gurney-Friedman ‘vanilla’ model [6).

In fact, the resulting correlation functions depend critically on the choice of the
potential model. At the MM level, adjustable parameters are introduced into the
potentials in order that the result is as close to experimental data as possibie [6].

Normally, osmotic or activity coefficients serve as a2 thermodynamic reference.
More recently, the calculated correlation functions could be directly compared with

0953-8984/91/407907+12503.50 © 1991 IOP Publishing Ltd 7907



7908 W Kunz et al

neutron scattering data [7). This comparison allowed us to obtain a set of potential
parameters which produce realistic solvent-averaged ion-pair correlation functions by
means of the ‘primitive-model’ HNC.

However, the parameters are difficult to interpret. Therefore HNC figures mainly
as a fitting algorithm for the description of experimental data.

In this paper we will present an alternative approach at a level which is placed
somewhere between MM and BO. The theory should fulfill the following conditions.

(i) The amount of computing costs should not considerably exceed that of HNC-
MM.
(i) Nevertheless the calculation of ion-solvent correlation functions should be
possible.

(iii) The adjustable parameters should have a precisely defined physical sense,

A convenient starting point is given by one of the authors [8] in the framework
of Poisson-Boltzmann equations. The method described in the following can be
regarded as a translation of the ideas given there to integral equation techniques. We
briefly repeat these ideas.

At the MM level, the calculated ion-ion correlation functions depend only on
the solvent-averaged potentials, the temperature and the salf concentration. In our
present approach the correlation functions depend also on the concentration of the
solvent and the change of ion-solvent interactions as a function of solute and solvent
concentrations. In this way we take into account a change in the energy of solvation
of the jons when the concentrations vary. Thus the salt activity coefficient v, can be
written formally as

Invy, = B,-J- + AR, (1)
where B;; represents the free energy change due to ion-ion interactions and A B;,
is the free energy change of solvation between a given concentration ¢ and infinite
dilution: AB; = B, (¢)— B,;,(c — 0). AB; cannot be calculated at the MM level.

One of the features of the present approach is the calculation of a permittivity
function () around a central ion so as to reflect the molecular and dipolar char-
acter of the solvent. The distance dependent dielectric function is calculated with
the help of ion-ion pair correlation functions g;.(r) which come from HNC. The
function £(r) is inserted into the ion-ion interaction potential, which is then used for
a new ‘primitive model’ HNC calculation. The resulting ion-pair correlation functions
yield a new function £(r) and the jteration cycle continues until e(r) and g;;(r) are
self-consistent. From the correlation functions thermodynamic properties like activity
coefficients can be calculated as well as e(c) for a given concentration. However,
the change of the reference state and the variation of the ion-solvent interactions
with concentration require a modification of the relations used to calculate thermo-
dynamic quantities. Besides the thermodynamic quantities, e(r) and g;;(r) allow us
to calculate the ion-solvent correlation functions g; ().

The method was tested by comparing the theoretical results with experimental
data for two aqueous electrolyte solutions, namely NaCi/H, O and KBr/H,O.

As will be discussed later, the model for the jon-ion potentials was chosen to be
as simple as possible. This has the advantage that the typical features of the new
approach are not hidden by the choice of a sophisticated potential model; however,
the price to be paid for this is that the calculated results cannot be expected to be in
perfect agreement with experiment.

In the next section we will describe the applied technique in detail.
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2. Theory

2.1. The algorithm of the classical ‘primitive model” HNC

Since our theory is based on the algorithm of the solvent-averaged model HNC (HNC-
MM, ‘primitive model” HNC) we briefly repeat the basic equations.

The HNC equation (2) provides a link between the interaction potentials w;;(r)
of two jsolated ions i and j and their radial correlation functions g;;(r)

9:;(7) = exp[~Buy; (r) + S;;(r)] @)

where 8 = 1/kT. k is Boltzmann’s constant. The quantity S;.(+) can be regarded as
the difference between the direct potential «;,(r) and the concentration-dependent
potential of mean force W;;(r) resulting from the influence of all other particles

Sij("') = n@["’ij(r) - Wz’j(r)]' (3)
In the HNC approximation S;;(r) is given by

Si,'(”) = hij(f') - c.‘j("') 4)

where

hij(r)=g;(r)~1 )

is the total correlation function and ¢;; () is the direct one involved in the Ornstein—
Zernike equation

hi;(r1a) = ¢;5(ry) + ZP;: fc.'k(ﬁa)hkj(raz) dry 6)
%

where p; is the number density of particles of type k. Equations (2) and (4-6) can
iteratively be solved for given potentials ;;(r). Since we deal with charged ions, the
algorithm must be modified because of the long-range part of the solvent-averaged
potential due to Coulombian interactions. Reference [9] contains a discussion of this
problem.

In our case the potential model is chosen as simple as possible. It consists of a

hard-sphere term u{l>(r) and an electrostatic term u§}"(r).

uy; (1) = wfS(r) + uif(r). o)
o if r<a;;
HS — el
ul(r) = { 0 itr>a, ®

where a;;(r) is the sum of the ionic radii a; and o, and uff is given by

2
ele _ 2:%;€

T ame(r)egr

©®)

in which z; and z; are the valencies of ions ¢ and j, e is the charge of an electron, ¢,
is the permittivity of vacuum and «(r) is a distance-dependent permittivity function
of the solution. Therefore, as far as the HNC algorithm is concerned, one of the main
differences between HNC-MM and our approach is the distance dependence and, as
we will see, the concentration dependence of «.
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2.2. The distance and concentration dependence of the permittivity

The calculation of () is based on the following model.
We consider a central jon i At infinite dilution the displacement field D;(r)
created by the ion { is
2: €
Di(r)= —

10
dreyr? a0
When the concentration of ions increases, additional charges appear in the neigh-
bourhood of the central ion ¢
e . 47 f7 (pigi(r)zie + p;9i;(r)z;e)dr

47e,r?

. %

Di(r) = i (11)
Thus, D;(r) can be calculated from known ion-ion correlation functions g;;(r). In
the next step we calculate the electric field E (r). For this purpose a model] has to
be introduced. We chosed a model which is based on the work of Booth [10] and
Grahame [11] and which is discussed in details by Liszi ef af [12]. It is assumed that
the permittivity  of a liquid depends on the electric field strength E in the following
way:

e=n?+4

4xNu Bu3eE
P L(2£+n2>. (12)

Here N is the number of molecules in unit volume, g is the actual dipole moment of a
molecule, n is the refractive index of water (n = 1.3342) and L(z) = coth(z)-1/x
is Langevin’s equation. By introducing further approximations explained in [12],
equation (12) can be rewritten as follows:

g —n?
EVb
where b is the Booth-Grahame coefficient (for water b = 1198.3 A2 V-%) and £’ is
the static relative permittivity under weak fields. The relation E == D /e immediately

yields the desired relation between the electric field and the displacement field which
can be written in our case as

(o0} — n?) ta ‘IE,-\/I_) 1
5, = (D, - = e ENE) 1

e(oo) is equal to the value £(c) which will be discussed in section 3.
Equation (14) is solved iteratively starting with an estimated value for E(r). The
function =,(r) is then immediately calculated by

£i(r) = Di(r}/ E(r). (15)

With the knowledge of D,(r) and E;(r) it is easy to calculate the polarization field
P;(r) from

s=n2+

tan™* Evb (13)

(14)

Fi(r) = &o(D;(r) ~ Ey(r)) (16)

It should be stressed that like the hard-sphere potential model, our model for the
variation of £ with the distance r is very simple. Other models suggest a more com-
plicated structure of €(r)} [13], which may lead to different results for the calculated
correlation functions.
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2.3. The change of the reference state

23.1. The reference at infinite dilution. As indicated in subsection 2.2, the displacement
field at infinite dilution is only due to the central ion (equation (10)). Nevertheless,
the Booth-Grahame equation gives a variation of E(D(r)) and hence a distance
dependent () which is related to the solvation of ions at infinite dilution (¢f equa-
tion (1)).

) E(r)
B; (¢ —=0)= %fu 41rr2drfo E(r)e(r)dE (17)

Of course, for infinite dilution—which is our reference state—e(co) is equal to the
dielectric constant of the pure solvent, for water: €(co) = 78.3. But in the neigh-
bourhood of the ions () decreases down to values of n? = 1.78 due to the high
electric field. For finite salt concentrations D(r), E(r), and £(r) will change (for a
given distance r) in compatison with their corresponding values for ¢ — 0. Therefore
the solvation energy B, will differ from the reference state value B; (¢ — 0).

In section 2.5 we will discuss the calculation of activity coefficients derived from
the potential function at the contact of two ions. It is important to note that this
calculation is always relative to the corresponding calculation at infinite dilution.

2.3.2. The covolume correction.

HNC calculations take the covolumes of the ions into account. At the MM level
the covolume of the solvent is neglected. In our present work, we intend to calculate
also ion-solvent correlation functions. This has two consequences for the calculation
of covolumes.

(i} The punctual ion-solvent correlation functions must be corrected by the co-
volume of the jons and the solvent itself in order to get ‘real’ correlation functions.

(ii) The HNC ion-ion correlation functions must also be cotrected by the covolume
of the solvent,

The reference system of state differs now from the MM system. However we will stress
that the covolume corrections have only a small influence on the ion—ion correlation
functions. As far as the activity coefficients are concerned the solvent covolume
effects are very small for concentrations less than 1 m. Nevertheless, the calculation
of the covolumes is important for the calculation of jon-solvent correlation functions.

The basic ideas of the covolume corrections [14] are already given in [8]. The
only modification to the corrections of Poisson-Boltzmann equations is that in a
HNC calculation the influence of the covolume of the ions on the ion-ion correlation
functions is already included in the hard sphere term of the ion-ior interaction

potential.
The covolumes of an ion ¢, b; and of a solvent molecule s, b, are defined as
16w 16w

where b; and a; are given in A% and A, respectively (cf tables 1 and 2).
Furthermore we define

16(1] =1+ P+b+ +p_b_ (19}
BB = W 4 pb, (20)
p; = C;N, x 1077 1)
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where C; is the macroscopic concentration of particle ¢ in mol I} and N, is Avo-
gadro's number.

In the next section we explain how the covolume correction is carried out simul-
taneously with the calculation of the jon—solvent correlation functions.

2.4. The calculation of the ion—solvent correlation functions

The polarization field P,(r) is related to the number of solvent dipoles beiween the
ions per unit volume. In order to obtain the real polarization Pj'(r) relative to the
total unit volume, it is necessary to take the volume occupied by the ions into account.

P} (r) = Py(r)/6® (22)
B3 =14 p,gli(r)b; + p; gl (7)b; (23)

The jon-ion correlation functions g}, () are corrected by the covolume of the solvent.
They will be defined in (27) and (28). The punctual ion-solvent correlation function
gi,(r) is then given by

gis(r) = exp LI, - (24)

c;,{(r) is the real concentration profile of the ion-solvent correlation

cu(r) = g (o, 0y )
e, (r) is used now for the calculation of gi,(r)

= (ci,(r)i{; FR 5 26)

gii(r) = g;(r)Ti(r) v

gl (r) = 9 (NTi(v) %)

Equations (22)-(28) form a closed set of equations. There is one set of equations
for the cation (¢ = 4,7 = —) and one for the anion (: = —, j =4). Details of the
computation are discussed in section 3.

2.5. The calculation of the activity coefficient

At the MM level, correlation functions from HNC can be directly related to activity
coefficients y, in units of molanity [15,16]

lny, = ;(—\/z:;é;jm) + 2mp; fom i (r) 8 (r)r? dr) (29)

lnyi=z%1ny,- p=ZP;» (30)
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(&(0) is the Fourier transform of the direct correlation function ¢(r) at &k = 0.) In
our case the situation is more complicated because the reference state has changed
(cf subsection 2.3.1). We chose the following decomposition similar to Msa calcula-
tions [17]

Iny; = In ¥ + In g (31)

A simple HNC-MM calculation with z, = 0 and z_ = 0 gives In yf%, the contribution
of uncharged hard spheres for a given concentration.

The term In y§* is calculated from the potential V;(a;;) at the contact of two
ions 7 and 3,

Viay)= [ E(rar &)

o0

which yields the free energy of the electrostatic interaction between the ions
kT In 'y: = —;—V;(a,-j)z,-e. (33)

Taking into account the corresponding expression for the reference state at infinite
dilution in y° yields

Inyf®=In y§ —Inyf® (34)
i) — Vi¥(ay;)) (35}

2kT

In ¥ reflects both the interionic electrostatic interaction Bf}e and the change of the
solvation energy A B, . The precision of (31) can be estimated by comparing its resuit
with (29) for the special case where £(r) = constant = 78.3 for all concentrations.
For this special case we tested the resulting activity coefficients for NaCl in water
up to concentrations of 2 M. Between the y,; values calculated in the two ways, the
deviations are less than 1%. This difference comprises the errors which are made in
the numerical calculation of D,(r), E;(r} and V;(a;;). As far as our present work
is concerned the precision is regarded to be sufficient.

For comparison with experiment we further converted the calculated molar activity
coefficients to units of molality.

3. Computational Aspects
3.1. The algorithm

3.1.1. First iteration cycle. The program starts with a classical HNC-MM calculation
where £(r) = constant = £(c) is an estimated value for a given concentration, e.g.
about 70 for 1 M KBt/H,O. From the obtained g;;(r) functions D,(r), E,(r) and
g,(r) are calculated according to (11), (14) and (15) The resulting €, (r) and e_(r)
functions are introduced in the interaction potentials «, . (r) and u__(r). For the
u,_{r) potential the average values (e (r) + s_(r))fz are used. With these new
potentials a new HNC calculation is performed, then ;( ) functions are calculated and
the iteration cycle continues until the g;;(r) function of two iterations are identical.
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The variation of € with concentration is only important near the contact of the
ions. At greater distances (r > 10 A) e(r) rapidly tends to £(o0) = (). Therefore
the long-range part of HNC is not touched and the conventional HNC algorithms can
be applied as described in [18]. Furthermore the variation of £ does not dramatically
change the ion-ion correlation functions of classical HNC-MM. As a consequence, the
gi;(v) from HNC-MM are always a good starting point so that the iteration cycles
easily converge.

3.1.2. Second iteration cycle. When this convergence is achieved we simultaneously
calculate the jon-solvent correlation function g;,(r) (equation (24)), and the covol-
ume correction function T;(r) (equation (26)). This simultaneous caiculation starts
at high r values where the functions T;(r), g;;(r), 9;; {r} are very close to 1. For the
calculation of these functions at smaller particle d:stances we made, in (23), the as-
sumption that gj;(r—Ar) = gj;(r) and g{;(r— Ar) = g!,(r) and, in equations (24)
and (25} the assumption that ¢;,(r — Ar) = ¢;,(7). Smce Avr is small (cf subsec-
tion 3.2) this approximation is justified. A new HNC iteration cycle (subsection 3.1.1)
starts now but this time the HNC equation (2) is modified to read

9;;(r) = {exp [~Bu,;; (r) + §;;(7)]} Ty;(r) (36)
Ty;(r) = J(Ti(r) + T;(r)). (7

In general T;; has values close to 1, except at distances close to the contact distance
of the particles, so convergence is rapidly obtained. The T;(r) coefficients have an
effect similar to an additional short-range potential. They slightly modify the values of
the g, (r) functions at the contact distance of ions ¢ and 7. For the systems discussed
in this paper, the maxima of the g, (r) functions are thus slightly increased by about
1%. Since the long-range part of the correlation functions are not influenced by
T:(r), equation (37) is in agreement with the Stillinger and Lovett conditions.

From the corrected g;;(r) the ion-solvent correlation functions can immediately
be calculated. Furthermore a new set of T;; values can be obtained which is in
general so close to the first one that no further iteration cycle is necessary.

A different run is performed for infinite dilution in order to obtain V*(a;;)

In y,. can then be calculated for a given concentration and a given value of s(’c)
according to (31)-(35).

3.2. Numerical problems

As usual, HNC calculations are partially carried out in Fourier space. This means that
the spacing Ar in real space cannot be arbitrarily diminished for a given number
of grid points without loss of precision in Fourier space. Furthermore the contact
distance a,_ divided by Ar should give an integer. This is a consequence of the
hard-sphere model.

In order to get reliable numerical results we chose Belloni’s HNC algorithm [16, 18]
which allows the introduction of non-equidistant grid points in the region where the
correlation functions and the permittivity function vary rapidly. The application of
very fine grid points in this region considerably improved the numerical integration
and differentiation. However, for non-equidistant grid points the fast Fourier algo-
rithm cannot be used. A good compromise between computing time and numerical
precision is obtained when using 1024 points with Ar = e, /10 and 400 additional
grid points with Ar = e, /100 in the low-distance region.
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4. Results and discussion

4.1. The activity coefficient and =(c)

The theory presented here—we will cali it HNC-BiIs—was tested for two types of
solutions: NaCl/H,O and KBr/H,O. Between 0.1 m and 1 m we adjusted the cal-
culated activity coefficients to experimental ones by varying the values of £(oc).
Furthermore we carried out two other series of calculations. Classical HNC at the
MM level with £(r) = e(e) = 78.3 for all values of r and ¢ (HNC-MM) and HNC
with e(r) = £(c) = &, (HNCC) where ¢, are concentration—but not distance
dependent—permittivities derived from dielectric measurements [20,21]. The results
and the potential parameters used are given in tables 1 and 2.

Table 1. Experimental and calculated properties of NaCl solutions at 25 °C. £, (00} are
permittivities which yield the experimentally obtained values of activity coeficients 3,
by means of HNCBIS and equation (33) after conversion into the molality scale. Units: m,
mal (kg solvent)—!; ¢, mol I-1; ¢y, water concentration in mol ™1, ay, 4+ = 0.98 A;
ag- = 1.81 A; ag,0 =1.39 A,

ecalc(oo) In 7::1‘
m c Cw In+3p (191 Ings £exp [21] HNCBIS HNC-MM  HNCC
01 009952 5529 —-0.109 0.003 76.7 74.5 -0.127 —0.130
03 0.2975 55.08 -0.149 0.012 734 67.0 —-0.185 —-0.203
05 0.4939 5488 -0.167 0.019 70.5 60.5 ~0.214 ~0.249

Table 2. Experimental and calculated properties of KBr solutions at 25 *C. Units: m,
mol (kg solvent)™!; ¢, mol 1-1; ¢y, water concentration in mol -1, ayy = 1.33 A;
ap- =1.96 A; ag,0 =1.39 A.

£ca1e(00) In Tl
m c Cw In4%, 9] Invffy  €exp [20]  HNCBIS HNC-MM  HNC-C
0.1 00994 5520 -0.112 0.607 77 76.8 -0.118 -0.119
0.3 0.2960 5482 -0.159 0.020 5 73.8 —0.164 -0.175
0.5 04899 5444 -0.182 0.033 724 720 —-0.183 -0216
1.0 09630 5350 -0.210 0.067 66.9 710 =0.198 ~0.257

A comparison between the experimental values of the activity coefficients of NaCl
and KBr shows that In vt (KBr) is more negative than In ~7;, (NaCl) for compa-
rable concentrations. This feature cannot be ascribed to the different ion sizes of
KBr and NaCl since this would have a - small—effect in the opposite direction (cf
In vf%). Therefore we believe that the different activity coeflicients result from a
different change of the solvation energy A B;_ in both solutions.

In Friedman’s HNC-MM calculations [6] this effect is globally reflected in the Gur-
ney soft sphere potential by Gurney parameters which are two times more negative
for KBr (A, = —100 cal mol~!, A,__ = ~86 cal mol~!) than for NaCl solutions
(A, = =50 cal mol~!, A, = —47 cal mol™?). This means that an additional
attractive potential was used which is two times more attractive for KBr solutions
than for NaCl solutions.
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HNC-MM with the simple charged hard sphere potential and ¢ = 78.3 for all
concentrations predicts activity coefficients which are either too small (NaCl) or in
rough agreement with experiment (KBr), cf tables 1 and 2. At the MM level, a
decrease of ¢, with increasing concentrations (HNC-C) leads to caiculated activity
coefficients which are, in both cases, by far too small when compared with experiment.

In contrast, in HNC-BIS calculations the variation of £(¢) is a natural consequence
of the variation of B, (c¢). It should be noted that a decrease of e(c) in HNC-BIS
calculations can either produce higher <« values than the ones obtained by HNC-MM
(cf NaCl 0.5 m) or lower values (cf KBr 1.0 m). This is a consequence of the
competition between ion-ion (B;;) and ion-solvent (B;,) interactions in our model.
It is equivalent to a competition between jonic association and ionic solvation. In any
case, a decrease of z(c) with concentration is in qualitative agreement with values
Eexp deduced from experiment (cf figure 1). In the HNC-BIS calculations the fitted
e(¢) values of NaCl solutions are smaller than the ones obtained in the fitting process
of vy .. This is also in qualitative agreement with experiment [20). However, we
must remark that the adjusted =(c) values of the NaCl solutions are too low when
compared with experiment and that it is difficult to obtain self-consistency of HNC-BIS
calculations for low £(c) values. Therefore we restricted our present calculations to
concentrations not higher than 0.5 m in the case of NaCl solutions, It is interesting
to note that the approach of Kusalik and Patey {2] also gives a too strong decrease
of £ (NaCl) with salt concentration for ¢ < 1 M.

In order to compare the accuracy of our approach with that of HNC-MM and
HNC-C we also carried out HNC-BIS calculations with £(c0) = €,,,. The In v, values
obtained in this way are —0.122, —-0.178, and —0.206 for NaCl concentrations of
0.1 m, 0.3 m and 0.5 m, respectively. Although these values are not in agreement
with the experimental values, they are better than the results from HNC-MM and HNC-C
(cf table 1). The same tendency was found for the KBr solutions.

8O

70 1

50 4

~~

A 40
5 5 30+
= %z

2 | &2
= . 104

60 T T T T T 0
00 02 04 06 08 10 ‘ !

Molality r / Angstrom

Figure 1. The concentration dependence of {(c)  Figure 2. The variation of the permittivity function
at 25 °C, Values derived from experiment for KBr  s(r) with distance r to z central ion at 25°C for
(—) [20] and NaCl (- - -} [21}, and caleulated 0.F m (——) and 1 m (- -~} KBr.

vaiues which give the correct activity coefficients for

KBr (x) and NaCl (+).



Hypernetted chain theory for electrolyte solutions 7917

4.2. The distance dependence of e(r)

In figure 2 two typical examples of the distance dependence of <(r) are displayed as
obtained by HNC-BIS. As given by the Booth-Grahame equation £(r) varies between
the square of the refraction index (n? = 1.78) and e(oc). The variation is spectacular
between 2 and 4 A, ie. at distances similar to the diameter of small ions. Beyond
8 A g(r) is almost identical with £(o0).

For dilute solutions (0.1 m) &(r) is not significantly influenced by the ion-ion
correlation functions. The second term of (11) is small. In contrast, at 1 m, the
contribution of this term is visible beyond the contact distance of cation and anion
(for KBr 3.29 A). The dielectric function is shifted to higher values. The situation is
similar for NaCl but the contact distance is smaller, 2,79 A.

7 7
61 64
51 5
v w
[=%
o ok
> w
14 1
0 T T
0 2 4 6 8 00 2

Figure 3. (a) The cation-anion correlation functions g4 —{r) for KBr solutions at 0.1 m
{(—) and 1 m (- - ~) as derived from HNC calculations with variable «(r). (b) The
cation-anion correlation functions g4 —(r) for KBr solutions at 0.1 m (——) and 1 m
{(— - -) as derived from HNCC (£{c) = 76.8 and 710, respectively}.
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Figure 4. Ion-solvent correlation functions of KBr solutions at two different concentra-
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at I m.
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4.3. Correlation functions

In figure 3(a) the resulting correlation functions gy g,-(7) are given for 0.1 m
and 1 m. For comparison we display the analogous result, obtained by HNC-C, in
figure 3(b). As expected, the lower values of £(r) (HNC-BIS) near contact considerably
enhance the g, (r) functions at contact. Their general shape, however, is not
changed.

The behaviour of the ion-solvent correlation functions is more instructive (fig-
ure 4). Near contact the correlation functions around cation and anion are somewhat
different up to centre-to-centre distances of about 4 A, When the concentration is
increased, not only the absolute concentration of water in the solution diminishes but
also the relative concentration, represented by the ion-water correlation functions,
has smaller values near the ion-water contact distance. Speaking in physical terms,
more and more water molecules are pushed back out of the first solvation shells.
Corresponding calculations based on the Poisson-Boltzmann equations [8] show that
at very high concentrations the solvation of the ions is progressively weakenecd by the
presence of counterions. This exemplifies the competition of solvation and association
in concentrated solutions. The extension of HNC calculations to high concentrations
or even saturation conditions will be the topic of a future work.
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