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AbstraeL A new lype of HNC calculation is propared in which the variation of the 
solvation energies with salt and solvent concentration is taken into account This is done 
by means of a self-consistent calculation of the distance dependent permittivity function 
amund a central ion. The lheory yields ion-ion as well as ion-solvenl ”elation 
functions and concenmtion dependent permillivilies In COnlmSt to HNC calculations 
with a completely discrele-sobent model, the program requires only a small amounl of 
computing power. 

1. Introduction 

Integral equation techniques are often used for calculating structural and thermo- 
dynamical properties of electrolyte solutions 111. As far as numerical methods are 
concerned, the hypernetted chain (HNC) equation is considered to be the most con- 
venient closure to the classical Ornstein-Zernike equation. Up to the present, two 
levels of description have been used in the framework of integral equations. 

At the so-called Born-Oppenheimer (BO) level, the structure of the solvent is 
explicitely taken into account, and HNC provides us not only with ion-ion, but also 
with ion-solvent and solvent-solvent correlation functions [Z]. However, the amount 
of numerical and mathematical problems is considerable. 

At the so-called McMillan-Mayer (MM) level, the sobent is ‘averaged out’ and, 
as a result, we obtain ‘only’ sobentaveraged ion-ion pair correlation functions [3]. 
At this level, HNC is significantly simpler to resolve but information about ion-sohrent 
interactions is lost (‘primitive model’ HNc). 

For both types of HNC calculations, potentials are needed which describe the 
interactions between two particles. At the BO level these potentials are inferred from 
ab-initio calculations or from more qualitative atomic models [4]. At the MM level, 
the potentials are derived from BO calculations [SI or from intuitive physico-chemical 
models such as the Gurney-Friedman Vanilla’ model [6]. 

In fact, the resulting correlation functions depend critically on the choice of the 
potential model. At the MM level, adjustable parameters are. introduced into the 
potentials in order that the result is as close to experimental data as possible 161. 

Normally, osmotic or activity coeEcients sewe as a thermodynamic reference. 
More recently, the calculated correlation functions could be directly compared with 
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neutron scattering data [7) This comparison allowed us to obtain a set of potential 
parameters which produce realistic solvent-averaged ion-pair correlation functions by 
means of the ‘primitive-model’ H N C  

However, the parameters are difficult to interpret. Therefore HNC figures mainly 
as a fitting algorithm for the description of experimental data. 

In this paper we will present an alternative approach at a level which is placed 
somewhere between MM and BO. The theory should fulfill the following conditions. 

(i) The amount of computing costs should not considerably exceed that of HNC- 

(ii) Nevertheless the calculation of ion-solvent correlation functions should be 
possible. 

(i) The adjustable parameters should have a precisely defined physical sense. 
A convenient starting point is given by one of the authors [SI in the framework 
of Poisson-Boltzmann equations. The method described in the following can be 
regarded as a translation of the ideas given there to integral equation techniques. We 
briefly repeat these ideas. 

At the MM level, the calculated ion-ion correlation functions depend only on 
the solvent-averaged potentials, the temperature and the salf concentration. In our 
present approach the correlation functions depend also on the concentration of the 
solvent and the change of ion-solvent interactions as a function of solute and solvent 
concentrations. In this way we take into account a change in the energy of solvation 
of the ions when the concentrations vary. Thus the salt activity coefficient y* can be 
written formally as 

where Bij represents the free energy change due to ion-ion interactions and A B i ,  
is the free energy change of solvation between a given concentration c and infinite 
dilution: A B i ,  = B; , ( c ) -B i , ( c  -+ 0) .  AB;, cannot be calculated at the MM level. 

One of the features of the present approach is the calculation of a permittivity 
function E ( ? - )  around a central ion so as to reflect the molecular and dipolar char- 
acter of the solvent. The distance dependent dielectric function is calculated with 
the help of ion-ion pair correlation functions g i j ( ? - )  which come from HNc. The 
function E ( ? - )  is inserted into the ion-ion interaction potential, which is then used for 
a new ‘primitive model’ HNC calculation. The resulting ion-pair correlation functions 
yield a new function e(?-) and the iteration cycle continues until E ( ? - )  and g i j ( r )  are 
self-consistent. From the correlation functions thermodynamic properties like activity 
coefficients can be calculated as well as c(c) for a given concentration However, 
the change of the reference state and the variation of the ion-solvent interactions 
with concentration require a modification of the relations used to calculate thermo- 
dynamic quantities. Besides the thermodynamic quantities, E ( ? - )  and gi i (?- )  allow us 
to calculate the ion-solvent correlation functions si,(?-). 

The method was tested by comparing the theoretical results with experimental 
data for two aqueous electrolyte solutions, namely NaCl/H,O and KBr/H,O. 

As will be discussed later, the model for the ion-ion potentials was chosen to be 
as simple as possible. This has the advantage that the typical features of the new 
approach are not hidden by the choice of a sophisticated potential model; however, 
the price to be paid for this is that the calculated results cannot be expected to be in 
perfect agreement with experiment. 

Mhi. 

Iny* = Bij + A B i s  (1) 

In the next section we will describe the applied technique in detail. 
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2. Theory 

21. The atgvrithm of the classical primitive model' HNC 
Since our theory is based on the algorithm of the solvent-averaged model HNC (HNC- 
mi, 'primitive model' HNC) we briefly repeat the basic equations. 

'The HNc equation (2) provides a link between the interaction potentials uij(.) 
of two isolated ions i and j and their radial correlation functions g i j ( v )  

si,(T) = e x d - P u i j ( d  + S;j(.)l (2) 
where p = l/kT. k is Boltzmann's constant. The quantity Si,(.) can be regarded as 
the difference between the direct potential u i j ( ~ )  and the concentrationdependent 
potential of mean force Wij ( r )  resulting from the influence of all other particles 

s i j ( ~ )  = P [ u i j ( 4  - Wi,(r)l .  (3) 

In the HNC approximation Si, ( T) is given by 

S, , ( r )  = hi j (T)  - C i j ( T )  

hi j (T)  = Sij(.) - 1 
where 

is the total correlation function and c i j ( 7 )  is the direct one involved in the Omstein- 
Zemike equation 

where pk is the number density of particles of type IC. Equations (2) and (4-6) can 
iteratively be solved for given potentials ui j ( r ) .  Since we deal with charged ions, the 
algorithm must be modified because of the long-range part of the solvent-averaged 
potential due to Coulombian interactions. Reference [9] contains a discussion of this 
problem. 

In our case the potential model is chosen as simple as possible. It consists of a 
hard-sphere term U?(.) and an electrostatic term u$(T).  

HS 
" i j ( T )  = ujj ( T )  + u$(.). 

CO i f r  < ai, 

if T > aij 
HS U i j  ( T )  = 

where ai j (?)  is the sum of the ionic radii ai  and a,, and U:? is given by 

in which zj and zj are the valencies of ions i and j, e is the charge of an electron, eo 
is the permittivity of vacuum and E ( T )  is a distance-dependent permittivity function 
of the solution. Therefore, as far as the HNC algorithm is concerned, one of the main 
differences between HNC-MM and our approach is the distance dependence and, as 
we will see, the concentration dependence of E .  
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22 nte distance and concentration dependence of the permilti@ 
The calculation of E(.) is based on the following model. 

created by the ion i is 
We consider a central ion i. At infinite dilution the displacement field D;(T) 

zi e D;(r)  = - 
41rEo13 

When the concentration of ions increases, additional charges appear in the neigh- 
bourhood of the central ion i 

Thus, Di(r )  can be calculated from known ion-ion correlation functions g i j ( r ) .  In 
the next step we calculate the electric field E,(.). For this purpose a model has to 
be introduced. We chosed a model which is based on the work of Booth [lo] and 
Grahame [ I l l  and which is discussed in details by Liszi et a1 [12]. It is assumed that 
the permittivity E of a liquid depends on the electric field strength E in the following 
way: 

Here N is the number of molecules in unit volume, j~ is the actual dipole moment of a 
molecule, n is the refractiveindexofwater (n = 1.3342) and L(r) = coth(r)- l /x  
is Langevin's equation. By introducing further approximations explained in [12], 
equation (12) can be rewritten as follows: 

tan-' E& 
E' - n2 

e=n2+-  
E& 

where b is the Booth-Grahame coefficient (for water b = 1198.3 Aa V-') and E' is 
the static relative permittivity under weak fields. The relation E = D / E  immediately 
yields the desired relation between the electric field and the displacement field which 
can be written in our case as 

(&(CO) - na) tan- ' (E i&)  

4 
&(CO) is equal to the value E ( C )  which will be discussed in section 3. 

function E i ( r )  is then immediately calculated by 
Equation (14) is solved iteratively starting with an estimated value for E( T) .  The 

e i ( y )  = D;(r ) /E i ( r ) .  (15) 
With the knowledge of D i ( r )  and E,(.) it is easy to calculate the polarization field 
Pi(r )  from 

= .o(D;(r) - E;(.))  (16) 
It should be stressed that like the hard-sphere potential model, our model for the 

variation of E with the distance T is very simple. Other models suggest a more com- 
plicated structure of E ( r )  [13], which may lead to different results for the calculated 
correlation functions. 
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23. The change of the reference state 

23.1. The reference at infinite dilution. As indicated in subsection 2.2, the displacement 
field at infinite dilution is only due to the central ion (equation (10)). Nevertheless, 
the Booth-Grahame equation gives a variation of E ( D ( r ) )  and hence a distance 
dependent E(.) which is related to the solvation of ions at infinite dilution (cf equa- 
tion (1)). 

Of course, for infinite dilution-which is our reference state-e(m) is equal to the 
dielectric mnstant of the pure solvent, for water: e(m) = 78.3. But in the neigh- 
bourhood of the ions ~ ( r )  decreases down to values of n2 = 1.78 due to the high 
electric field. For finite salt concentrations D(r), E ( r ) ,  and &(r) will change (for a 
given distance r )  in comparison with their corresponding values for c - 0. Therefore 
the solvation energy B,, will differ from the reference state value B,,(c - 0 ) .  

In section 2 5  we will discuss the calculation of activity coefficients derived from 
the potential function at the contact of two ions. It is important to note that this 
calculation is always relative to the corresponding calculation at infinite dilution, 

23.2 The covolume correclion. 
HNC calculations take the a~volumes of the ions into account. At the MM level 

the c o ~ l u m e  of the solvent is neglected. In our present work, we intend to calculate 
also ion-solvent correlation functions. This has two consequences for the calculation 
of covolumes. 

(i) The punctual ion-solvent correlation functions must be corrected by the co- 
volume of the ions and the solvent itself in order to get 'real' correlation functions. 

(ii) The HNC ion-ion correlation functions must also be corrected by the covolume 
of the solvent 
The reference system of state differs now from the MM system. However we will Stress 
that the c o ~ l u m e  corrections have only a small influence on the ion-ion correlation 
functions. As far as the activity coefficients are concerned the solvent covolume 
effects are very small for concentrations less than 1 m. Nevertheless, the calculation 
of the covolumes is important for the calculation of ion-solvent correlation functions. 

The basic ideas of the covolume corrections [14] are already given in [SI. The 
only modification to the corrections of Poisson-Boltzmann equations is that in a 
HNC calculation the influence of the covolume of the ions on the ion-ion correlation 
functions is already included in the hard sphere term of the ion-ion interaction 
potential. 

The covolumes of an ion i, bi and of a solvent molecule s, b, are defined as 
167r 167r 

a: bi = - ai b, = - 
3 

where b, and a ,  are given in A3 and respectively (cf tables 1 and 2). 
Furthermore we define 

P( l )  = 1 + p+b+ + p - b -  (19) 

= P ( l )  + p,b,  (20) 

(21) 
27 pi = C; NA x 10- 
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where Ci is the macroscopic concentration of particle i in mol I-' and N A  is Avo- 
gadro's number. 

In the next section we explain how the covolume correction is camed out simul- 
taneously with the calculation of the ionsolvent correlation functions 

24. The calculafion of the ion-solvent correlatidn funcfwns 

The polarization field Pi(,)  is related to the number of solvent dipoles beween the 
ions per unit volume. In order to obtain the real polarization Pi'(?-) relative to the 
tofal unit volume, it is necessary to take the volume occupied by the ions into account. 

The ion-ion correlation functions g:j ( T )  are corrected by the m l u m e  of the solvent. 
They will be defmed in (27) and (28). The punctual ion-solvent correlation function 
g ia (T)  is then given by 

c;.(T) is the real concentration profile of the ion-solvent correlation 

ci , (v)  is used now for the calculation of &(r)  

Equations (22)-(28) form a dosed set of equations. There is one set of equations 
for the cation (is +,j E -) and one for the anion ( i  - , j  = +). Details of the 
computation are discussed in section 3. 

2.5. The calculation of fhe activity coeficienf 

At the MM level, correlation functions Prom HNC can be directly related to activity 
coefficients y, in units of molarity [U 161 
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(E(0)  is the Fourier transform of the direct correlation function c(r) at k = 0.) In 
our case the situation is more complicated because the reference state has changed 
(cf subsection 2.3.1). We chose the following decomposition similar to MSA calcula- 
tions 1171 

(31) HS In yi = In yi + In yf" 

A simple HNc-MM calculation with I+ = 0 and I- = 0 gives In y$', the contribution 
of uncharged hard spheres for a given concentration. 

The term In yfie is calculated from the potential K ( a i j )  at the contact of two 
ions i and j, 

V ( a i j )  = L'J E,(.) dr  

which yields the free energy of the electrostatic interaction between the ions 

k T l n y i  = $K(u; , ) z ie .  (33) 

Taking into account the corresponding expression for the reference state at infinite 
dilution In y r  yields 

In yfie = In yi - In y,"" (34) 
z; e 

2kT = - ( K ( a i j )  - y"(ai j ) )  (35) 

In  yrie reflects both the interionic electrostatic interaction BQ and the change of the 
solvation energy ABi 8 .  The precision of (31) can be estimated by comparing its result 
with (29) for the special case where &(r)  = constant = 78.3 for all concentrations. 
For this special case we tested the resulting activity coefficients for NaCl in water 
up to concentrations of 2 M. Between the y; values calculated in the two ways, the 
deviations are less than 1%. This difference comprises the errors which are made in 
the numerical calculation of D i ( r ) ,  E,(?) and y(a i j ) .  As far as our present work 
is concerned the precision is regarded to be sufficient. 

For comparison with experiment we further converted the calculated molar activity 
coefficients to units of molality. 

3. Computational Aspects 

3.1. The algorifhm 

3.1.1. First iteralion cycle. The program starts with a classical HNC-MM cahlation 
where &(r)  = constant = E(C) is an estimated value for a given concentration, e.g. 
about 70 for 1 M KBr/H,O. From the obtained gij(.) functions D;(r), E,(.) and 
q(r) are calculated according to (l l) ,  (14) and (15). The resulting E + ( T )  and E-(.)  

functions are introduced in the interaction potentials u++(r) and u- - ( r ) .  For the 
U+-(?) potential the average values (E+(.) + e - ( r ) )n  are used. With these new 
potentials a new HNC calculation is performed, then E; (  r) functions are calculated and 
the iteration cycle continues until the g i j ( r )  function of two iterations are identical. 
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The variation of E with concentration is only important near the contact of the 
ions. At greater distances (P > 10 A) e(.) rapidly tends to ~ ( m )  = E ( c ) .  Therefore 
the long-range part of HNC i\. not touched and the conventional HNC algorithms can 
be applied as described in [IS]. Furthermore the variation of E does not dramatically 
change the ion-ion correlation functions of classical HNC-MM. As a consequence, the 
g i j ( r )  from HNC-MM are always a good starting point so that the iteration cycles 
easily converge. 

3.1.2 Second &eration cycle. When this convergence is achieved we simultaneously 
calculate the ion-sohrent correlation function si,(?-) (equation (24)), and the cwol- 
ume correction function Ti(.) (equation (26)). This simultaneous calculation starts 
at high r values where the functions Ti(.), g i i ( r ) ,  g j j ( T )  are very close to 1. For the 
calculation of these functions at smaller particle distances we made, in (U), the as- 
sumption that d i ( r -Ar )  s~ g f i ( r )  and g i j ( ? - - A r )  s~ g i j ( r )  and, in equations (24) 
and (25) the assumption that cis(. - Ai-) s~ cis(.). Since AT is small (ef subseo 
tion 3.2) this approximation is justified. A new HNC iteration cycle (subsection 3.1.1) 
starts now but this time the HNc equation (2) is modified to read 

g, , ( r )  = {exp [ - ~ u i j ( ~ )  + sij(?-)l) T , ~ ( T )  

Ti,(.) = ;(Ti(?-) -F ?(PI).  

(36) 

(37) 

In general Tij has values close to 1, except at distances close to the contact distance 
of the particles, so convergence is rapidly obtained. The Ti(r) coefficients have an 
effect similar to an additional short-range potential. They slightly modify the values of 
the gij (r)  functions at the contact distance of ions i and j. For the systems discussed 
in this paper, the maxima of the g*(?-) functions are thus slightly increased by about 
1%. Since the long-range part of the correlation functions are not influenced by 
Ti(.), equation (37) is in agreement with the Stillmger and Lovett conditions. 

From the corrected g i j ( r )  the ion-solvent correlation functions can immediately 
be calculated. Furthermore a new set of Tij values can be obtained which is in 
general so close to the first one that no further iteration cycle is necessary. 

A different run is performed for infinite dilution in order to obtain ViW(ai.) .  
lny* can then be calculated for a given concentration and a given value of E(C) 
according to (31)-(35). 

3.2 Numerical pmblems 
As usual, HNC calculations are partially carried out in Fourier space. This means that 
the spacing AT in real space cannot be arbitrarily diminished for a given number 
of grid points without loss of precision in Fourier space. Furthermore the contact 
distance a+- divided by AT should give an integer. This is a consequence of the 
hard-sphere model. 

In order to get reliable numerical results we chose Belloni’s HNC algorithm [I4181 
which allows the introduction of nonequidistant grid points in the region where the 
correlation functions and the permittivity function vary rapidly. The application of 
very fine grid points in this region considerably improved the numerical integration 
and differentiation. However, for non-equidistant grid points the fast Fourier algo- 
rithm cannot be used A good compromise between computing time and numerical 
precision is obtained when using 1024 points with AT = ak/10 and 400 additional 
grid points with AV = ~ * / 1 0 0  in the low-distance region. 
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4. Results and discussion 

4.1. The active co@cien! and +) 

The theory presented here-we will call it HNC-BIswas tested for two types of 
solutions: NaCl/H,O and KBr/H,O. Between 0.1 m and 1 m we adjusted the cal- 
culated activity coefficients to experimental ones by varying the values of ~ ( c o ) .  
Furthermore we carried out two other series of calculations. Classical HNC at the 
MM level with E(r)  = E ( C )  = 78.3 for all values of T and c (mc-hihf) and HNc 
with E ( P )  = E ( C )  = eeXp (HNC-C) where E , ~  are concentration-but not distance 
dependent-permittivities derived from dielectric measurements [20,21]. The results 
and the potential parameters used are given in tables 1 and 2. 

TPbk 1. Expnimentll and calculaled properlies of NaCl solutions at 25 'C c.d.(co) are 
pemiltivities which yield the aperimenlally oblained values of activity coetficienls y& 
by means of HNGBIS and equation (33) after conversion inlo the molality scale. Unit% m, 
mol (kg solvent)-'; c, mol I-'; e,, water concentration in mol I-'. aN1+ = 0.98 A; 
ac,- = 1.81 A; aH1o = 1.39 A. 

In 7% 

m c  cw Iny& 1191 In-& ccxp 1211 HNCBIS HNGMM HNCC 

0.1 0.09952 55.29 -0.109 0.003 76.7 74.5 -0.127 -0.130 
0.3 0.2975 55.08 -0.149 0.012 73.4 67.0 -0.185 -0.203 
0.5 0.4939 5488 -0.167 0.019 70.5 60.5 -0.214 -0.249 

Table 2. Experimental and calculated propertis of KBr solutions at 25 "C. Units: m. 
mol (kg solvenx;'; c, mol I-'; cx, water concentration in mol I-[. aK+ = 1.33 A; 
ag,- = 1.96 D H ~ O  = 1.39 A. 

0.1 011994 55.20 -0.112 0.007 77 76.8 -0.118 -0.119 
0.3 0.2960 54.82 -0.159 0.020 75 73.0 -0.164 -0.175 
0.5 0.4899 54.44 -0.182 0.033 72.4 72.0 -0.183 -0.216 
1.0 0.9630 53.50 -0.210 0.067 66.9 71.0 -0.198 -0.257 

A comparison between the experimental values of the activity coefficients of NaCI 
and KBr shows that In 7gp (KBr) is more negative than In 7& (NaCl) for compa- 
rable concentrations. This feature cannot be ascribed to the different ion sizes of 
KBr and NaCl since this would have a - small-effect in the opposite direction (cf 
In rFs). Therefore we believe that the different activity coefficients result from a 
different change of the solvation energy AB;, in both solutions. 

In Friedman's HNC-MM calculations [6] this effect is globally reflected in the Gur- 
ney soft sphere potential by Gurney parameters which are two times more negative 
for KBr (At+ = -100 cal mol-', At- = -86 cal mol-') than for NaCl solutions 
(Att ,= -50 cal mol-', A+- = -47 cal mol-I). This means that an additional 
attractwe potential was used which is two times more attractive for KBr solutions 
than for NaCl solutions. 
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HNC-MM with the simple charged hard sphere potential and E = 78.3 for all 
concentrations predicts activity coefficients which are either too small (NaCI) or in 
rough agreement with experiment (KBr), cf tables 1 and 2 At the MM level, a 
decrease of E ,  with increasing concentrations (HNC.~) leads to calculated activity 
coefficients which are, in both cases, by far too small when compared with experiment. 

In contrast, in HNC-BIS calculations the variation of E(.) is a natural consequence 
of the variation of B,,(c). It should be noted that a decrease of E ( C )  in HNC-BIS 
calculations can either produce higher y values than the ones obtained by HNC-MM 
(cf NaCl 0.5 m) or lower values (cf KBr 1.0 m). This is a consequence of the 
competition between ion-ion (Bjj) and ion-solvent (E?,%) interactions in our model. 
It is equivalent to a competition between ionic association and ionic solvation. In any 
case, a decrease of E(.) with concenlmtion is in qualitative agreement with values 

deduced from experiment (cf figure 1). In the HNC-BIS calculations the fitted 
E(C) values of NaCl solutions are smaller than the ones obtained in the fitting process 
of yKBr. This is also in qualitative agreement with experiment (201. However, we 
must remark that the adjusted E ( C )  values of the NaCl solutions are too low when 
compared with experiment and that it is difficult to obtain self-consistency of HNC-BIs 
calculations for low E(.) values. Therefore we restricted our present calculations to 
concentrations not higher than 0.5 m in the case of NaCl solutions. It is interesting 
to note that the approach of Kusalik and Patey [2] also gives a too strong decrease 
of E (NaCI) with salt concentration for c < 1 M. 

In order to compare the accuracy of our approach with that of HNC-MM and 
HNC-c we also carried out HNC-BIS calculations with €(CO) = cexp. The In y* values 
obtained in this way are -0.122, -0.178, and -0.206 for NaCl concentrations of 
0.1 m, 0.3 m and 0.5 m, respectively. Although these values are not in agreement 
with the experimental values, they are better than the resula from HNC-MM and HNC-c 
(cf table 1). The same tendency was found for the KBr solutions. 

"I I I 
0.0 0.2 0.4 0.6 0.8 1.0 

Molality 
Figure 1. The concentration dependence of E ( = )  

at 25 T. Valuea derived from experiment Cor KBr 
(-) (201 and NaCl (- - -) [Zl], and calculated 
values which give the mrreer activityccemcients for 
KBr ( x )  and NaCl (+). 

::K 50 

40 

30 - .- 
v1 U" 10 

10 

0 
0 1 2 3 4 5 6  

r /Angstrom 
Figure 2. The varialion of the permittivity function 
c(r) with distance r to a central ion at W C  for 
0.1 m (-) and 1 m (- - -) KBr. 
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4.2. The dktance dependence of e(r) 

In figure 2 two typical examples of the distance dependence of E ( V )  are displayed as 
obtained by HNC-BIS. As given by the Booth-Grahame equation e(r) varies between 
the square of the refraction index (nZ = 1.78) and &(CO). The variation is spectacular 
between 2 and 4 4 i.e. at distances similar to the diameter of small ions. Beyond 
8 8, e ( r )  is almost identical with €(CO). 

For dilute solutions (0.1 m) e(.) is not significantly influenced by the ion-ion 
correlation functions. The second term of (11) is small. In contrast, at 1 m, the 
contribution of this term is visible beyond the contact distance of cation and anion 
(for KBr 3.29 A). The dielectric function is shifted to higher values. The situation is 
similar for NaCl but the contact distance is smaller, 2.79 A 
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P@m 3. (0) The cation-anion correlation funclions g+-(r) for KBr yolutions at 0.1 m 
(-) and 1 m (- - -) as derived from HNC calculations with variable c(r). (b) The 
cationunion correlation functions g+-(r) for KBr solutions at 0.1 m (-) and 1 m 
(- - -) as derived from HNCC (c(c) = 76.8 and 71.0, respeclively). 

I' I Angstrom 

Pigum 4. lon-sohrenl correlation functions of KBr solutions at WO different concentra- 
tions g+.(r) (-)and$ -,( r ) ( - - - )a tO. lm;$+ . (r ) ( . . . . . . ) and$  - .(r)( .  . .  .) 
at 1 m. 
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4.3. CorreIaiton functions 

In figure 3(a) the resulting correlation functions gK+Br-(?-) are given for 0.1 m 
and 1 m. For comparison we display the analogous result, obtained by HNCC, in 
figure 3(b). As expected, the lower values of E ( ? - )  (HNC-BIS) near contact considerably 
enhance the g+- (v )  functions at contact. Their general shape, however, is not 
changed. 

The behaviour of the ion-solvent correlation functions is more instructive (fig- 
ure 4). Near contact the correlation functions around cation and anion are somewhat 
different up to centre-to-centre distances of about 4 8, When the concentration is 
increased, not only the absolute concentration of water in the solution diminishes but 
also the relative concentration, represented by the ion-water correlation functions, 
has smaller values near the ion-water contact distance. Speaking in physical terms, 
more and more water molecules are pushed back out of the first solvation shells. 
Corresponding calculations based on the Poisson-Boltzmann equations [8] show that 
at very high mncentrations the solvation of the ions is progressively weakened by the 
presence of counterions. This exemplifies the competition of solvation and association 
in concentrated solutions. The extension of HNC calculations to high concentrations 
or even saturation conditions will be the topic of a future work. 
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